Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 Oct 22;219(1217):397-412.
doi: 10.1098/rspb.1983.0080.

The effects of microtubule dissociating agents on the physiology and cytology of the sensory neuron in the femoral tactile spine of the cockroach, periplaneta americana L

The effects of microtubule dissociating agents on the physiology and cytology of the sensory neuron in the femoral tactile spine of the cockroach, periplaneta americana L

J E Kuster et al. Proc R Soc Lond B Biol Sci. .

Abstract

Microtubules are prominent cellular components of the mechanosensory and chemosensory sensilla associated with the insect cuticle, and a range of hypotheses have been proposed to account for their role in sensory transduction. Chemical agents such as colchicine and vinblastine, which dissociate microtubules, also interfere with transduction in these sensilla, and this has been attributed to their anti-microtubule activity. We have now examined the dynamic properties of sensory transduction in the mechanosensitive neuron of the cockroach femoral tactile spine, after the application of colchicine, vinblastine and lumicolchicine. Concurrently we have examined the ultrastructure of the same sensory ending by transmission electron microscopy. All of the drugs reduced the mechanical sensitivity o the receptor. Colchicine and vinblastine achieved this reduction without altering the dynamic properties of the receptor but lumicolchicine changed the dynamic response, and increased the relative sensitivity to rapid movements. Conduction velocity, another measure of neuronal function, which relies upon ionic currents flowing through the membrane, was reduced by all three drugs. The effects of the drugs upon the ultrastructure of the sensory ending were also disparate. In the case of colchicine there was complete dissociation of microtubules in the tubular body and distal dendrite before a total loss of mechanical sensitivity. Vinblastine was less effective in dissociating microtubules, although more effective in the reduction of mechanical sensitivity. With lumicolchicine the dominant morphological effect was a severe disruption of the dendritic membrane. We conclude from these experiments that microtubules are not essential in the transduction of mechanical stimuli by cuticular receptors and that the effects of these drugs upon mechanosensitivity are not directly related to their dissociation of the microtubules in the tubular body, but are more likely to arise from actions upon the cell membrane. These actions could include effects upon tubulin in the membrane or upon other membrane components.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources