Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983;44(2):223-40.
doi: 10.1007/BF02890172.

Connective matrix organization in human pulmonary fibrosis. Collagen polymorphism analysis in fibrotic deposits by immunohistological methods

Connective matrix organization in human pulmonary fibrosis. Collagen polymorphism analysis in fibrotic deposits by immunohistological methods

C Takiya et al. Virchows Arch B Cell Pathol Incl Mol Pathol. 1983.

Abstract

In the interstitium of the alveolar septa in the peripheral parts of the lung, four molecular types of collagen (I, III, IV and V) each with different morphological appearances, can be identified. The structural integrity of collagens accounts for the physiological efficiency of the lung. Fibrous thickening of alveolar septa is an invariable result of various diseases affecting the interstitium of the lung. The light and electron microscopic findings, and the immunological typing of collagens in six cases of fibrotic alveolar disease, are described. In the alveolar septa, two different compartments (the alveolo-capillary junction and the supportive axis) were affected by fibrosis: the alveolo-capillary junction was widened by the addition of interstitial collagens to basement membranes. In the axis, the increase of interstitial (types I and III) collagen gave rise to different patterns of connective matrix organization, graded as Loose or Dense depending on quantitative alterations of the type I/III ratio. The mode of organization of the fibrotic lung connective matrix, which depends on the quality of deposits in the matrix, may be correlated with the evolution of interstitial pulmonary fibrosis, in terms of its stability, remodelling ability and reversibility.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources