Biosynthetic regulation of the human transferrin receptor by desferrioxamine in K562 cells
- PMID: 6142046
Biosynthetic regulation of the human transferrin receptor by desferrioxamine in K562 cells
Abstract
Treatment of K562 cells with the iron chelator desferrioxamine results in the gradual increase in total cell receptors for transferrin. Receptor number rises 2.5-4.5-fold over 24 h and remains at the elevated level if the chelator is continuously present. Preincubation of the chelator with ferric chloride abolishes the effect. The drug has no effect on the 7-h half-life of the receptor. The increased number of receptors can be accounted for by a specific increase in the rate of receptor biosynthesis which reaches 3-4 times that seen in untreated cells by 6 h after the addition of the chelator. Isolation of mRNA from treated cells reveals that, after 8 h in the presence of desferrioxamine, there is a 3-fold increase in the specific translation of transferrin receptor over untreated cells. Total protein synthesis is not changed under these conditions.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
