Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 Dec;29(12):1706-14.
doi: 10.1139/m83-261.

Nitrogen metabolism and chloramphenicol production in Streptomyces venezuelae

Nitrogen metabolism and chloramphenicol production in Streptomyces venezuelae

S Shapiro et al. Can J Microbiol. 1983 Dec.

Abstract

The relationship between chloramphenicol production and nitrogen metabolism in Streptomyces venezuelae was examined in stirred jar cultures under pH control. Nitrogen sources that supported rapid biomass accumulation gave low rates of antibiotic synthesis during growth. This was consistent with a general incompatibility between fast growth and high yields of chloramphenicol. In media where the growth rate was reduced below the attainable maximum by the rate at which nitrogen could be assimilated, chloramphenicol production was associated with biomass accumulation. Enzymes that are potentially associated with nitrogen assimilation pathways were assayed in cultures supplied with nitrogen sources supporting markedly different growth rates. The results indicated that glutamine synthetase and alanine dehydrogenase levels were relatively insensitive to changes in growth rate and nitrogen source depletion. Glutamate dehydrogenase and glutamate synthase, on the other hand, showed high activity in cultures assimilating ammonium nitrogen and markedly decreased activity with poorer nitrogen sources or when ammonium was depleted. If chloramphenicol biosynthesis is coordinately controlled by mechanisms that regulate nitrogen assimilation, glutamate synthase and glutamate dehydrogenase are the most likely enzymes that manifest the regulatory linkage.

PubMed Disclaimer

MeSH terms

LinkOut - more resources