Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Jan;8(1):1-8.
doi: 10.1016/0167-0115(84)90023-5.

Pituitary response to growth hormone-releasing factor in rats with functional or anatomical lesions of the central nervous system that inhibit endogenous growth hormone secretion

Pituitary response to growth hormone-releasing factor in rats with functional or anatomical lesions of the central nervous system that inhibit endogenous growth hormone secretion

W B Wehrenberg et al. Regul Pept. 1984 Jan.

Abstract

The pituitary growth hormone (GH) response to the growth hormone-releasing factor, hpGRF-44, was evaluated in male rats with various lesions of the central nervous system. These included an electrical lesion of the ventromedial hypothalamus, a chemical lesion of the arcuate nucleus induced by neonatal treatment with monosodium glutamate, a functional lesion of catecholamine synthesis with alpha-methyl-p-tyrosine or a functional lesion of catecholamine storage with reserpine. The first three lesions appear to partially inhibit normal somatostatin secretion since in every instance hpGRF-44 administration induced a significant increase in plasma GH concentrations. In contrast, reserpine blocked the GH response to hpGRF-44, presumably by stimulating somatostatin secretion. The pituitary GH response to hpGRF-44 in the above described models was enhanced by pretreatment of the rats with antibodies against somatostatin. The pituitary GH response to repeated injections of hpGRF-44 was also evaluated in rats with an anatomical lesion of the arcuate nucleus or a functional lesion of catecholamine synthesis. The maximum GH response did not vary over time to the repeated injections of hpGRF-44 in rats with lesions of the arcuate nucleus; however, interruption of catecholamine synthesis resulted in a significant decrease in the GH response to hpGRF-44 over time.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources