Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Aug;99(2):536-49.
doi: 10.1083/jcb.99.2.536.

Analysis of the role of microfilaments and microtubules in acquisition of bipolarity and elongation of fibroblasts in hydrated collagen gels

Analysis of the role of microfilaments and microtubules in acquisition of bipolarity and elongation of fibroblasts in hydrated collagen gels

J J Tomasek et al. J Cell Biol. 1984 Aug.

Abstract

Fibroblasts in situ reside within a collagenous stroma and are elongate and bipolar in shape. If isolated and grown on glass, they change from elongate to flat shape, lose filopodia, and acquire ruffles. This shape change can be reversed to resemble that in situ by suspending the cells in hydrated collagen gels. In this study of embryonic avian corneal fibroblasts grown in collagen gels, we describe for the first time the steps in the acquisition of the elongate shape and analyze the effect of cytoskeleton-disrupting drugs on filopodial activity, assumption of bipolarity, and cell elongation within extracellular matrix. We have previously shown by immunofluorescence that filopodia contain actin but not myosin and are free of organelles. The cell cortex is rich in actin and the cytosol, in myosin. By using antitubulin, we show in the present study that microtubules are aligned along the long axis of the bipolar cell body. The first step in assumption of the elongate shape is extension of filopodia by the round cells suspended in collagen, and this is not significantly affected by the drugs we used: taxol to stabilize microtubules; nocodazole to disassemble microtubules; and cytochalasin D to disrupt microfilaments. The second step, movement of filopodia to opposite ends of the cell, is disrupted by cytochalasin, but not by taxol or nocodazole. The third step, extension of pseudopodia and acquisition of bipolarity similarly requires intact actin, but not microtubules. If fibroblasts are allowed to become bipolar before drug treatment, moreover, they remain so in the presence of the drugs. To complete the fourth step, extensive elongation of the cell, both intact actin and microtubules are required. Retraction of the already elongated cell occurs on microtubule disruption, but retraction requires an intact actin cytoskeleton. We suggest that the cell interacts with surrounding collagen fibrils via its actin cytoskeleton to become bipolar in shape, and that microtubules interact with the actin cortex to bring about the final elongation of the fibroblast.

PubMed Disclaimer

References

    1. J Cell Sci. 1981 Aug;50:299-314 - PubMed
    1. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1561-5 - PubMed
    1. J Cell Biol. 1982 Oct;95(1):333-9 - PubMed
    1. J Cell Biol. 1976 May;69(2):275-86 - PubMed
    1. Cell. 1979 Jan;16(1):165-9 - PubMed

Publication types