Xenopus laevis 28S ribosomal RNA: a secondary structure model and its evolutionary and functional implications
- PMID: 6147812
- PMCID: PMC320067
- DOI: 10.1093/nar/12.15.6197
Xenopus laevis 28S ribosomal RNA: a secondary structure model and its evolutionary and functional implications
Abstract
Based upon the three experimentally derived models of E. coli 23S rRNA (1-3) and the partial model for yeast 26S rRNA (4), which was deduced by homology to E. coli, we derived a secondary structure model for Xenopus laevis 28S rRNA. This is the first complete model presented for eukaryotic 28S rRNA. Compensatory base changes support the general validity of our model and offer help to resolve which of the three E. coli models is correct in regions where they are different from one another. Eukaryotic rDNA is longer than prokaryotic rDNA by virtue of introns, expansion segments and transcribed spacers, all of which are discussed relative to our secondary structure model. Comments are made on the evolutionary origins of these three categories and the processing fates of their transcripts. Functionally important sites on our 28S rRNA secondary structure model are suggested by analogy for ribosomal protein binding, the GTPase center, the peptidyl transferase center, and for rRNA interaction with tRNA and 5S RNA. We discuss how RNA-RNA interactions may play a vital role in translocation.
Similar articles
-
Structural analysis of the peptidyl transferase region in ribosomal RNA of the eukaryote Xenopus laevis.J Mol Biol. 1991 Jan 5;217(1):93-112. doi: 10.1016/0022-2836(91)90614-c. J Mol Biol. 1991. PMID: 1988683
-
Hydroxylated histidine of human ribosomal protein uL2 is involved in maintaining the local structure of 28S rRNA in the ribosomal peptidyl transferase center.FEBS J. 2015 Apr;282(8):1554-66. doi: 10.1111/febs.13241. Epub 2015 Mar 5. FEBS J. 2015. PMID: 25702831
-
The 3'-terminal region of bacterial 23S ribosomal RNA: structure and homology with the 3'-terminal region of eukaryotic 28S rRNA and with chloroplast 4.5s rRNA.Nucleic Acids Res. 1981 Apr 10;9(7):1533-49. doi: 10.1093/nar/9.7.1533. Nucleic Acids Res. 1981. PMID: 6164989 Free PMC article.
-
Structure, function and evolution of 5-S ribosomal RNAs.Prog Nucleic Acid Res Mol Biol. 1984;31:161-90. doi: 10.1016/s0079-6603(08)60377-3. Prog Nucleic Acid Res Mol Biol. 1984. PMID: 6397770 Review. No abstract available.
-
Divergence towards a dead end? Cleavage of the divergent domains of ribosomal RNA in apoptosis.Experientia. 1996 Oct 31;52(10-11):963-7. doi: 10.1007/BF01920105. Experientia. 1996. PMID: 8917727 Review.
Cited by
-
Primary and secondary structure of 26S ribosomal RNA of Oenothera mitochondria.Curr Genet. 1985;9(6):505-15. doi: 10.1007/BF00434055. Curr Genet. 1985. PMID: 3870932
-
rRNA processing: removal of only nineteen bases at the gap between 28S alpha and 28S beta rRNAs in Sciara coprophila.Nucleic Acids Res. 1985 May 24;13(10):3581-97. doi: 10.1093/nar/13.10.3581. Nucleic Acids Res. 1985. PMID: 2989775 Free PMC article.
-
G-Quadruplexes in Human Ribosomal RNA.J Mol Biol. 2019 May 3;431(10):1940-1955. doi: 10.1016/j.jmb.2019.03.010. Epub 2019 Mar 15. J Mol Biol. 2019. PMID: 30885721 Free PMC article.
-
An rRNA variable region has an evolutionarily conserved essential role despite sequence divergence.Mol Cell Biol. 1994 Jun;14(6):4203-15. doi: 10.1128/mcb.14.6.4203-4215.1994. Mol Cell Biol. 1994. PMID: 8196658 Free PMC article.
-
Supersized Ribosomal RNA Expansion Segments in Asgard Archaea.Genome Biol Evol. 2020 Oct 1;12(10):1694-1710. doi: 10.1093/gbe/evaa170. Genome Biol Evol. 2020. PMID: 32785681 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources