Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1984 Sep-Oct;12(5):652-60.

The metabolism of ICI 118,587, a partial agonist of beta 1-adrenoceptors, in mice, rats, rabbits, dogs, and humans

  • PMID: 6149919
Comparative Study

The metabolism of ICI 118,587, a partial agonist of beta 1-adrenoceptors, in mice, rats, rabbits, dogs, and humans

T R Marten et al. Drug Metab Dispos. 1984 Sep-Oct.

Abstract

The absorption, metabolism, and excretion of 14C-labeled xamoterol (ICI 118,587) has been examined in mice, rats, rabbits, dogs, and humans. There was incomplete absorption by all species after oral administration, ranging from 9% by humans to 36% by dogs. Most of the absorbed radioactivity was eliminated within 24 hr of administration and the renal route predominated. Conjugates of the parent compound were the only observed metabolites in urine, the phenolic glucuronide being the principal animal metabolite and the phenol sulfate being the only human metabolite. There were marked interspecies variations in metabolite patterns and dogs were the only animal species in which the sulfate metabolite was detected. Comparison of the urinary metabolite patterns also showed higher output of the conjugates after oral administration than after intravenous administration, indicating that first pass metabolism was taking place. Little significant change in absorption or metabolism was seen over a range of oral doses; in rats, some saturation of the glucuronide-conjugating mechanism was observed but the sulfate-conjugating mechanism showed little, if any, diminished capacity at high dose levels in dogs. The use of fast atom bombardment mass spectroscopy for the determination of the molecular weight of conjugates is described.

PubMed Disclaimer

Publication types

MeSH terms