Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1980 May;20(1):185-97.
doi: 10.1016/0092-8674(80)90246-9.

Sequence of the intron and flanking exons of the mitochondrial 21S rRNA gene of yeast strains having different alleles at the omega and rib-1 loci

Sequence of the intron and flanking exons of the mitochondrial 21S rRNA gene of yeast strains having different alleles at the omega and rib-1 loci

B Dujon. Cell. 1980 May.

Abstract

The complete nucleotide sequence has been determined for the intron, its junctions and the flanking exon regions of the 21S rRNA gene in three genetically characterized strains differing by their omega alleles (omega+, omega- and omega n) and by their chloramphenicol-resistant mutations at the rib-1 locus. Comparison of these DNA sequences shows that: --omega+ differs from omega- and omega n by the presence of the intron (1143 bp), as well as by a second and unexpected mini-insert (66 bp) located 156 bp upstream within the exon, whose nature and functions are still unknown but whose striking palindromic structure may suggest a mitochondrial transposable element. --The two mutations C321R and C323R correspond to two different monosubstitutions, 56 bp apart in the omega- and omega n strains but separated by the intron in the omega+ strains. In relation to previous genetic results, a model is discussed assuming that the interactions of two different regions or genetic loci determine the chloramphenicol resistance, one of which contains the omega n mutations. --A long uninterrupted coding sequence able to specify a 235 amino acid polypeptide exists within the intron. This remarkable observation gives new insight into the origin of the mitochondrial introns and raises the question of the possible functions of intron-encoded polypeptides. Finally, sequence comparisons with evolutionarily distant organisms, showing that different rRNA introns are inserted at different positions of an otherwise highly conserved region of the gene, suggest a recent insertion of these introns and a mechanism for splicing after the assembly of the large ribosomal subunit.

PubMed Disclaimer

Similar articles

Cited by

Publication types