Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1980 May;20(1):85-93.
doi: 10.1016/0092-8674(80)90237-8.

Cellular differentiation, cytidine analogs and DNA methylation

Cellular differentiation, cytidine analogs and DNA methylation

P A Jones et al. Cell. 1980 May.

Abstract

The nucleoside analog 5-azacytidine (5-aza-CR) induced marked changes in the differentiated state of cultured mouse embryo cells and also inhibited the methylation of newly synthesized DNA. The DNA strand containing 5-aza-CR remained undermethylated in the round of DNA synthesis following analog incorporation. The extent of inhibition of DNA modification and induction of muscle cells in treated cultures were dependent on the 5-aza-CR concentration over a narrow dose range. Experiments with the restriction enzyme Hpa II, which is sensitive to cytosine methylation in the sequence CCGG, demonstrated that the DNA synthesized in 5-aza-CR-treated cultures was maximally undermethylated 48 hr after treatment. Three other analogs of cytidine, containing a modification in the 5 position of the pyrimidine ring [5-aza-2'-deoxycytidine(5-aza-CdR), pseudoisocytidine (psi ICR) and 5-fluoro-2'-deoxycytidine(FCdR)] also induced the formation of muscle cells and inhibited DNA methylation. In contrast, 1-beta-D-arabinofuranosylcytosine (araC) and 6-azacytidine (6-aza-CR) did not inhibit DNA methylation or induce muscle formation, whereas 5-6-dihydro-5-azacytidine (dH-aza-CR) was a poor inducer of muscle cells and a poor inhibitor of DNA methylation. These results provide experimental evidence for a role for DNA modification in differentiation, and suggest that cytidine analogs containing an altered 5 position perturb previously established methylation patterns to yield new cellular phenotypes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources