Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1980 Nov-Dec;14(6):1342-53.

[Guanosine polyphosphate concentration and stable RNA synthesis in Bacillus subtilis following suppression of protein synthesis]

[Article in Russian]
  • PMID: 6160384
Comparative Study

[Guanosine polyphosphate concentration and stable RNA synthesis in Bacillus subtilis following suppression of protein synthesis]

[Article in Russian]
B R Belitskiĭ et al. Mol Biol (Mosk). 1980 Nov-Dec.

Abstract

Amount of guanosine-5'-triphosphate, 3'-diphosphate (pppGpp) and guanosine-5'-diphosphate, 3'-diphosphate (ppGpp) in the cells of b. subtilis increased several times during starvation for lysine or after treatment with serine hydroxamate (analog of serine) or norvaline (analog of leucine), or in the presence of trimethoprim, which induced deficiency of methionine and leucine. In exponentially growing cells the concentration of pppGpp was found to be 10-20 pmol/A600. When serine hydroxamate or trimethoprim were added, concentration of pppGpp increased to 500-800 pmol/A600 and then slowly diminished. Elimination of lysine or addition to the culture medium of norvaline caused slight transitory accumulation of pppGpp (150 pmol/A600). The amount of another nucleotide ppGpp was always 2-3 times lower than one of pppGpp. Accumulation of (p)ppGpp in rel+ cells was accompanied by cessation of stable RNA synthesis. Under conditions described above rel- cells continued RNA synthesis and did not accumulate (p)ppGpp. In the rel+ cells treated with serine hydroxamate synthesis of stable RNA resumed and the amount of (p)ppGpp decreased after addition of serine or tetracycline and chloramphenicol. The half-life period for pppGpp in the presence of chloramphenicol was determined to be 30-40 seconds. Thus, during aminoacyl-tRNA deficiency rel+ cells of B. subtilis accumulate (p)ppGpp, which are believed to participate in negative regulation of RNA synthesis. Slight accumulation of pppGpp without concomitant inhibition of stable RNA synthesis was observed after treatment of growing cells with chloramphenicol.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms