Electrosensory pathways to the valvula cerebelli in mormyrid fish
- PMID: 6163654
- DOI: 10.1007/BF00235725
Electrosensory pathways to the valvula cerebelli in mormyrid fish
Abstract
The valvula cerebelli of mormyrid fish has been implicated in the electroreceptive capabilities of these animals. This study uses peroxidase and tritiated amino acid tracing techniques to examine the pathways by which electroreceptive information gains access to the valvula. Ampullary and mormyromast receptor information reaches the medial and ventrolateral portions of the valvula by means of a large, direct projection from n. lateralis, part of the midbrain electrosensory area. In addition, smaller indirect n. lateralis-valvular projections travel via a pretectal nucleus and the so-called postventral thalamic nucleus, Knollenorgan receptor information ends in the dorsolateral portion of the valvula. A small, relatively direct pathway runs via n. medialis ventralis, but most Knollenorgan information appears to travel via an indirect system involving n. extrolateralis pars posterior and n. isthmi. The lateral line processing areas of the valvula project back onto many of the midbrain electrosensory nuclei. These results indicate that much of the cerebellum of this family is devoted to sensory processing rather than motor functions.
Similar articles
-
Central connections of the posterior lateral line lobe in mormyrid fish.Exp Brain Res. 1981;42(1):9-22. doi: 10.1007/BF00235724. Exp Brain Res. 1981. PMID: 6163655
-
Neuronal responses to electrosensory input in mormyrid valvula cerebelli.J Neurophysiol. 1978 Nov;41(6):1495-1510. doi: 10.1152/jn.1978.41.6.1495. J Neurophysiol. 1978. PMID: 731287
-
Neuroanatomical substrate for the dorsal light response. I. Differential afferent connections of the lateral lobe of the valvula cerebelli in goldfish (Carassius auratus).Neurosci Res. 1993 Jan;16(1):25-32. doi: 10.1016/0168-0102(93)90005-b. Neurosci Res. 1993. PMID: 8387162
-
Sensory coding and corollary discharge effects in mormyrid electric fish.J Exp Biol. 1989 Sep;146:229-53. doi: 10.1242/jeb.146.1.229. J Exp Biol. 1989. PMID: 2689564 Review.
-
Orientation in the dark: brain circuits involved in the perception of electric signals in mormyrid electric fish.Eur J Morphol. 1999 Apr;37(2-3):200-5. doi: 10.1076/ejom.37.2.200.4747. Eur J Morphol. 1999. PMID: 10342457 Review.
Cited by
-
Multiplexed temporal coding of electric communication signals in mormyrid fishes.J Exp Biol. 2013 Jul 1;216(Pt 13):2365-79. doi: 10.1242/jeb.082289. J Exp Biol. 2013. PMID: 23761462 Free PMC article. Review.
-
Physiological evidence of sensory integration in the electrosensory lateral line lobe of Gnathonemus petersii.PLoS One. 2018 Apr 11;13(4):e0194347. doi: 10.1371/journal.pone.0194347. eCollection 2018. PLoS One. 2018. PMID: 29641541 Free PMC article.
-
Central connections of the posterior lateral line lobe in mormyrid fish.Exp Brain Res. 1981;42(1):9-22. doi: 10.1007/BF00235724. Exp Brain Res. 1981. PMID: 6163655
-
Morphological analysis of the mormyrid cerebellum using immunohistochemistry, with emphasis on the unusual neuronal organization of the valvula.J Comp Neurol. 2008 Oct 1;510(4):396-421. doi: 10.1002/cne.21809. J Comp Neurol. 2008. PMID: 18663756 Free PMC article.
-
The Mormyrid Optic Tectum Is a Topographic Interface for Active Electrolocation and Visual Sensing.Front Neuroanat. 2018 Oct 1;12:79. doi: 10.3389/fnana.2018.00079. eCollection 2018. Front Neuroanat. 2018. PMID: 30327593 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Miscellaneous