Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1981 Apr 10;9(7):1533-49.
doi: 10.1093/nar/9.7.1533.

The 3'-terminal region of bacterial 23S ribosomal RNA: structure and homology with the 3'-terminal region of eukaryotic 28S rRNA and with chloroplast 4.5s rRNA

Free PMC article
Comparative Study

The 3'-terminal region of bacterial 23S ribosomal RNA: structure and homology with the 3'-terminal region of eukaryotic 28S rRNA and with chloroplast 4.5s rRNA

M A Machatt et al. Nucleic Acids Res. .
Free PMC article

Abstract

The sequence of the 110 nucleotide fragment located at the 3'-end of E.coli, P.vulgaris and A.punctata 23S rRNAs has been determined. The homology between the E.coli and P.vulgaris fragments is 90%, whereas that between the E.coli and A.punctate fragments is only 60%. The three rRNA fragments have sequences compatible with a secondary structure consisting of two hairpins. Using chemical and enzymatic methods recently developed for the study of the secondary structure of RNA, we demonstrated that one of these hairpins and part of the other are actually present in the three 3'-terminal fragments in solution. This supports the existence of these two hairpins in the intact molecule. Indeed, results obtained upon limited digestion of intact 23S RNA with T1 RNase were in good agreement with the existence of these two hairpins. We observed that the primary structures of the 3'-terminal regions of yeast 26S rRNA and X.laevis 28S rRNA are both compatible with a secondary structure similar to that found at the 3'-end of bacterial 23S rRNAs. Furthermore, both tobacco and wheat chloroplast 4.5S rRNAs can also be folded in a similar way as the 3'-terminal region of bacterial 23S rRNA, the 3'-end of chloroplast 4.5S rRNAs being complementary to the 5'-end of chloroplast 23S rRNA. This strongly reinforces the hypothesis that chloroplast 4.5S rRNA originates from the 3'-end of bacterial 23S rRNA and suggests that this rRNA may be base-paired with the 5'-end of chloroplast 23S rRNA. Invariant oligonucleotides are present at identical positions in the homologous secondary structures of E.coli 23S, yeast 26S, X.laevis 28S and wheat and tobacco 4.5S rRNAs. Surprisingly, the sequences of these oligonucleotides are not all conserved in the 3'-terminal regions of A.punctata or even P.vulgaris 23S rRNAs. Results obtained upon mild methylation of E.coli 50S subunits with dimethylsulfate strongly suggest that these invariant oligonucleotides are involved in RNA tertiary structure or in RNA-protein interactions.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Biokhimiia. 1965 Jul-Aug;30(4):705-12 - PubMed
    1. C R Seances Acad Sci D. 1980 Dec 8;291(12):937-40 - PubMed
    1. Biokhimiia. 1975 May-Jun;40(3):578-83 - PubMed
    1. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4734-8 - PubMed
    1. Nucleic Acids Res. 1976 Jul;3(7):1671-87 - PubMed

Publication types

Associated data

LinkOut - more resources