Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1981 Apr 28;20(9):2463-9.
doi: 10.1021/bi00512a016.

Interactions of free and immobilized myelin basic protein with anionic detergents

Interactions of free and immobilized myelin basic protein with anionic detergents

P F Burns et al. Biochemistry. .

Abstract

The interaction of free and immobilized myelin basic protein (MBP) with sodium deoxycholate (DOC) and sodium dodecyl sulfate (NaDodSO4) was studied under a variety of conditions. Free MBP formed insoluble complexes with both detergents. Analysis of the insoluble complexes revealed that the molar ratio of detergent/MBP in the precipitate increased in a systematic fashion with increasing detergent concentration until the complex became soluble. At pH 4.8, equilibrium dialysis studies indicated that approximately 15 mol of NaDodSO4 could bind to the protein without precipitation occurring. Regardless of the surfactant, however, minimum protein solubility occurred when the net charge on the protein-detergent complex was between +18 and -9. Complete equilibrium binding isotherms of both detergents to the protein were obtained by using MBP immobilized on agarose. The bulk of the binding of both detergents was highly cooperative and occurred at or above the critical micelle concentration. At I = 0.1, saturation levels of 2.09 +/- 0.15 g of NaDodSO4/g of protein and 1.03 /+- 0.40 g of DOC/g of protein were obtained. Below pH 7.0 the NaDodSO4 binding isotherms revealed an additional cooperative transition corresponding to the binding of 15-20 mol of NaDodSO4/mol of protein. Affinity chromatography studies indicated that, in the presence of NaDodSO4 (but not in its absence), [125I]MBP interacted with agarose-immobilized histone, lysozyme, and MBP but did not interact with ovalbumin-agarose. These data support a model in which the detergent cross-links and causes precipitation of MBP-anionic detergent complexes. Cross-linking may occur through hydrophobic interaction between detergents electrostatically bound to different MBP molecules.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources