Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1981 Apr;89(4):979-90.

In vitro effects of islet-activating protein on cultured rat pancreatic islets. Enhancement of insulin secretion, adenosine 3':5'-monophosphate accumulation and 45Ca flux

  • PMID: 6166608
Free article

In vitro effects of islet-activating protein on cultured rat pancreatic islets. Enhancement of insulin secretion, adenosine 3':5'-monophosphate accumulation and 45Ca flux

T Katada et al. J Biochem. 1981 Apr.
Free article

Abstract

Pancreatic islets were maintained in culture with or without islet-activating protein (IAP), which is a new protein purified from culture medium of Bordetella pertussis. These cultured islets (IAP-treated or control) were then incubated for 30 min in IAP-free medium with various insulin secretagogues. During incubation, much more insulin was released from IAP-treated islets than control islets in response to glucose, arginine, glucagon, and sulfonylurea. IAP was effective in this regard when added to cultures at concentrations higher than 0.01 ng/ml; the effect was dependent on concentration up to 100 ng/ml. Enhanced insulin secretion was associated with accumulation of cyclic AMP when breakdown of the nucleotide was prevented by a methylxanthine. Epinephrine caused marked inhibitions, via alpha-adrenergic receptors, of glucose-induced insulin release, cyclic AMP accumulation and 45Ca uptake in control islets but did not in IAP-treated islets during incubation. None of these effects of IAP pretreatment were observed unless the medium for incubation was supplemented with Ca ions. 45Ca ion flux through the islet cell membrane was accelerated by the IAP treatment; conceivably, IAP was effective in causing sustained activation of native calcium ionophores on the membrane, which would be responsible for the enhanced insulin and cyclic AMP responses characteristic of IAP-treated islets.

PubMed Disclaimer

Similar articles

Cited by