Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1980 Dec;88(5):497-503.
doi: 10.3109/13813458009092925.

Effect of pH on lipolysis, cAMP and cAMP-dependent protein kinase activity in isolated rat fat cells

Effect of pH on lipolysis, cAMP and cAMP-dependent protein kinase activity in isolated rat fat cells

G E Chiappe de Cingolani et al. Arch Int Physiol Biochim. 1980 Dec.

Abstract

The effect of acidosis and alkalosis on lipolysis, cAMP production and cAMP-dependent protein kinase activity in isolated rat fat cells incubated in the presence of norepinephrine and norepinephrine plus theophylline has been investigated. The pH of the incubation medium was adjusted to 6.8, 7.4 and 7.8 respectively. Acidosis inhibited both norepinephrine- and norepinephrine plus theophylline-induced release of glycerol whereas alkalosis led to slight stimulation. Norepinephrine produced an increase in cAMP and cAMP-dependent protein kinase activity. However, comparison of both parameters in acidosis and alkalosis with those at pH 7.4 indicates that they were higher at pH 7.8 and lower at pH 6.8. Addition of theophylline in combination with norepinephrine increases cAMP production within 5 min, under acidosis to values similar to those obtained at pH 7.4 with norepinephrine. The same effect on protein kinase activity was obtained. In spite of this increment in cAMP and protein kinase activity produced by addition of norepinephrine plus theophylline, lipolysis remains inhibited by acidosis. Addition of theophylline at pH 7.4 and 7.8 induced a much higher cAMP production and cAMP-dependent protein kinase activity although at pH 7.8 there was a statistically significant increase in protein kinase activity at 10 min it did not induce a significant increase in lipolysis. This is discussed and possible mechanisms are suggested to explain the effect of acidosis and alkalosis on the lipolysis induced by norepinephrine in rat fat cells.

PubMed Disclaimer

Similar articles

Publication types