Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Oct 13;449(1):95-107.
doi: 10.1016/0005-2728(76)90010-4.

Photophosphorylation as a function of illumination time. I. Effects of permeant cations and permeant anions

Photophosphorylation as a function of illumination time. I. Effects of permeant cations and permeant anions

D R Ort et al. Biochim Biophys Acta. .

Abstract

(1) Very brief periods of illumination do not initiate photophosphorylation in isolated chloroplast lamellae. The time of illumination required before any phosphorylation can be detected is inversely proportional to the light intensity. At very high intensities, phosphorylation is initiated after illumination for about 4 ms. (2) There is no similar delay in the initiation of electron transport. The rate of electron transport is very high at first but declines at about the time the capacity for ATP synthesis develops. When the chloroplasts are uncoupled with gramicidin the high initial rate persists. (3) Various ions which permeate the thylakoid membrane (K+ or Rb+ in the presence of valinomycin, SCN-, I-, or C1O4-) markedly increase the time of illumination required to initiate phosphorylation. Potassium ions in the presence of valinomycin increase the delay to a maximum of about 50 ms whereas thiocyanate ions increase the delay to a maximum of about 25 ms. The effects of K+ with valinomycin and the effect of SCN- are not additive. Permeant ions and combinations of permeant ions have little or no effect on phosphorylation during continuous illumination. (4) The reason for the threshold in the light requirement and the reason for the effect of permeant ions thereon are both obscure. However, it could be argued that the energy for phosphorylation initially resides in an electric potential gradient which is abolished by migration of ions in the field, leaving a more slowly developing proton concentration gradient as the main driving force for phosphorylation during continuous illumination. If so, the threshold in the presence of permeant ions should depend on internal hydrogen ion buffering.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources