Microtubule-neurofilament segregation produced by beta, beta'-iminodipropionitrile: evidence for the association of fast axonal transport with microtubules
- PMID: 6186798
- PMCID: PMC6564555
- DOI: 10.1523/JNEUROSCI.03-03-00557.1983
Microtubule-neurofilament segregation produced by beta, beta'-iminodipropionitrile: evidence for the association of fast axonal transport with microtubules
Abstract
The subperineurial injection of beta,beta'-iminodipropionitrile (IDPN) into rat sciatic nerves resulted in focal disorganization of the axonal cytoskeleton characterized by segregation of neurofilaments and microtubules. Shortly after injection, microtubules clustered together to form a central channel, while neurofilaments became chaotically arrayed between the microtubule channel and axolemma. Electron microscopic autoradiography disclosed that rapidly transported organelles were preferentially associated with the microtubule-enriched central channels. These studies indicate that IDPN acts at the level of the axon to disrupt interactions between cytoskeletal elements and show that rapidly transported constituents are preferentially conveyed in association with microtubules. The model provides an opportunity to dissect the interactions of the cytoskeletal elements and other organelles.
Similar articles
-
Redistribution of proteins of fast axonal transport following administration of beta,beta'-iminodipropionitrile: a quantitative autoradiographic study.J Cell Biol. 1982 Nov;95(2 Pt 1):672-5. doi: 10.1083/jcb.95.2.672. J Cell Biol. 1982. PMID: 6183280 Free PMC article.
-
Reorganization of axoplasmic organelles following beta, beta'-iminodipropionitrile administration.J Cell Biol. 1981 Dec;91(3 Pt 1):866-71. doi: 10.1083/jcb.91.3.866. J Cell Biol. 1981. PMID: 7199048 Free PMC article.
-
Axonal degeneration and axonal caliber alterations following combined beta,beta'-iminodipropionitrile (IDPN) and acrylamide administration.J Neuropathol Exp Neurol. 1989 Nov;48(6):653-68. doi: 10.1097/00005072-198911000-00007. J Neuropathol Exp Neurol. 1989. PMID: 2477506
-
The pathophysiology of proximal neurofilamentous giant axonal swellings: implications for the pathogenesis of amyotrophic lateral sclerosis.Toxicology. 1987 Oct 30;46(2):125-39. doi: 10.1016/0300-483x(87)90123-5. Toxicology. 1987. PMID: 3313811 Review.
-
The origin and nature of beading: a reversible transformation of the shape of nerve fibers.Prog Neurobiol. 1997 Aug;52(5):391-426. doi: 10.1016/s0301-0082(97)00022-1. Prog Neurobiol. 1997. PMID: 9304699 Review.
Cited by
-
Control of axonal caliber by neurofilament transport.J Cell Biol. 1984 Aug;99(2):705-14. doi: 10.1083/jcb.99.2.705. J Cell Biol. 1984. PMID: 6204997 Free PMC article.
-
Luminal material in microtubules of frog olfactory axons: structure and distribution.J Cell Biol. 1984 Aug;99(2):520-8. doi: 10.1083/jcb.99.2.520. J Cell Biol. 1984. PMID: 6430914 Free PMC article.
-
A Stochastic Multiscale Model That Explains the Segregation of Axonal Microtubules and Neurofilaments in Neurological Diseases.PLoS Comput Biol. 2015 Aug 18;11(8):e1004406. doi: 10.1371/journal.pcbi.1004406. eCollection 2015 Aug. PLoS Comput Biol. 2015. PMID: 26285012 Free PMC article.
-
Properties of highly viscous gels formed by neurofilaments in vitro. A possible consequence of a specific inter-filament cross-bridging.Biochem J. 1987 Jul 1;245(1):93-101. doi: 10.1042/bj2450093. Biochem J. 1987. PMID: 3663160 Free PMC article.
-
Giant axon formation in mice lacking Kell, XK, or Kell and XK: animal models of McLeod neuroacanthocytosis syndrome.Am J Pathol. 2014 Mar;184(3):800-7. doi: 10.1016/j.ajpath.2013.11.013. Epub 2014 Jan 7. Am J Pathol. 2014. PMID: 24405768 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources