Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 Jul;42(4):365-75.
doi: 10.1097/00005072-198307000-00001.

Cholinergic function in lumbar aluminum myelopathy

Cholinergic function in lumbar aluminum myelopathy

K S Kosik et al. J Neuropathol Exp Neurol. 1983 Jul.

Abstract

To determine whether perikaryal neurofilamentous accumulation in cholinergic neurons is associated with a deficit in cholinergic function, we developed a new model of aluminum-induced neurofibrillary degeneration, referred to as focal lumbar aluminum myelopathy. The model is produced by direct intramedullary microinjection of AlCl3, which results in a characteristic neurological syndrome. Four weeks after injections, affected rabbits show extensive neurofilamentous lesions of both large and small neurons in the lumbar spinal cord, including a majority of anterior horn cells. These animals are capable of long-term survival. Posterior tibial nerve morphometry in these rabbits revealed no significant loss of myelinated fibers. Choline acetyltransferase (ChAT) activity in the sciatic nerve was decreased 39%, from 45.70 +/- 2.36 nmol ACh/hour/3-mm segment in acid-injected controls to 17.72 +/- 1.94 in aluminum-intoxicated rabbits. The rate of accumulation of ChAT activity proximal to a sciatic nerve ligature was significantly greater in the aluminum-treated rabbits, although the total amount of ChAT activity accumulating in a 24-hour period did not differ from controls. We conclude that aluminum-induced accumulation of neurofilaments in cholinergic perikarya is associated with a sharp decrease of ChAT activity in the axons of those cells and possibly with a compensatory increase in the rate of delivery of the enzyme.

PubMed Disclaimer

Publication types