Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1978 Feb 9;501(2):174-82.
doi: 10.1016/0005-2728(78)90024-5.

Picosecond time-resolved study of MgCl2-induced chlorophyll fluorescence yield changes from chloroplasts

Picosecond time-resolved study of MgCl2-induced chlorophyll fluorescence yield changes from chloroplasts

J Barber et al. Biochim Biophys Acta. .

Abstract

The MgCl2-induced chlorophyll fluorescence yield changes in broken chloroplasts, suspended in a cation-free medium, treated with 3,-(3',4'-dichlorophenyl)-1,1-dimethylurea and pre-illuminated, has been investigated on a pico-second time scale. Chloroplasts in the low fluorescing state showed a fluorescence decay law of the form exp --At1/2, where A was found to be 0.052 ps-1/2, and may be attributed to the rate of spillover from Photosystem II to Photosystem I. Addition of 10 mM MgCl2 produced a 50% increase in the steady-state fluorescence quantum yield and caused a marked decrease in the decay rate. The fluorescence deday law was found to be predominantly exponential with a 1/e lifetime of 1.6 ns. These results support the hypothesis that cation-induced changes in the fluorescence yield of chlorophyll are related to the variations in the rate of energy transfer from Photosystem II to Photosystem I, rather than to changes in the partitioning of absorbed quanta between the two systems.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources