Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1984 Mar 25;259(6):3519-25.

Induction and decay of amino acid transport in the liver. Turnover of transport activity in isolated hepatocytes after stimulation by diabetes or glucagon

  • PMID: 6200477
Free article
Comparative Study

Induction and decay of amino acid transport in the liver. Turnover of transport activity in isolated hepatocytes after stimulation by diabetes or glucagon

M E Handlogten et al. J Biol Chem. .
Free article

Abstract

System A-mediated amino acid transport in liver tissue is stimulated by diabetes or by exogenous glucagon. The present report describes the decay process for stimulated System A activity in isolated rat hepatocytes. Transport induced by glucagon, insulin, or spontaneous diabetes (BB/G rats) decayed rapidly after initiation of primary cultures; the estimated half-life was about 1.5 h. In contrast, the stimulated activity in cultured hepatocytes from streptozotocin-diabetic rats had a half-life of about 2.5 h. It is not known if the loss of System A activity is the result of proteolysis or of another form of inactivation. The decay was blocked by either actinomycin or cycloheximide, but was unaffected by leupeptin, methylamine, chloroquine, dinitrophenol, rotenone, or tunicamycin. Studies with cycloheximide and actinomycin suggest the following: 1) within 30 min after initiation of cell cultures, synthesis of the corresponding mRNA for the transport-inactivating protein has begun; 2) the mRNA for transport-inactivating protein is relatively long-lived, but the inactivating protein itself has a half-life of less than 1 h; and 3) actinomycin blocks the decay through inhibition of transport-inactivating protein biosynthesis rather than by protection of the mRNA for the protein responsible for System A activity. A working model for the synthesis and decay of System A activity is presented. Cationic amino acid transport, System y+, was also stimulated severalfold after induction of diabetes or glucagon injection of rats. Systems ASC, X-, and N were enhanced to varying degrees in hepatocytes from diabetic or glucagon-injected rats, but the level of stimulation for each was not as great as that found for Systems A or y+.

PubMed Disclaimer

Publication types

LinkOut - more resources