Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1982 Dec;39(6):1587-93.
doi: 10.1111/j.1471-4159.1982.tb07991.x.

Stimulation of tubulin-dependent ATPase activity in microtubule proteins from porcine brain by vinblas tine

Stimulation of tubulin-dependent ATPase activity in microtubule proteins from porcine brain by vinblas tine

T Fujii et al. J Neurochem. 1982 Dec.

Abstract

Vinblastine, a plant alkaloid which inhibits tubulin polymerization, stimulated an ATPase activity in microtubules. When microtubule proteins were separated into microtubule-associated proteins (MAPs) and tubulin by phosphocellulose column chromatography, vinblastine did not stimulate an ATPase activity recovered in the MAPs fraction unless tubulin was present. Therefore, vinblastine is considered to act through its binding to the tubulin molecule on MAPs ATPase. Divalent cations that activate tubulin-dependent MAPs ATPase activity were also required for the stimulation by vinblastine. In the presence of Ca2+ and vinblastine the ATPase activity was most active and the extent of stimulation reached about 200% of the original level in the absence of vinblastine. Half-maximal stimulation was attained when the molar ratio of vinblastine to tubulin was 0.5. The concentration of tubulin for half-maximal stimulation was increased in the presence of vinblastine, while divalent cation requirements were decreased. Several factors such as KCl (100 mM), alkaline pH (pH 7.5), and low temperature (10 degrees C) were not responsible for the disappearance of the stimulation. Vincristine stimulated tubulin-dependent MAPs ATPases activity as vinblastine did, whereas the activity was scarcely affected by colchicine, podophyllotoxin, strychnine, and chlorpromazine. Actin had no effect on MAPs ATPase activity in the absence and presence of vinblastine when it was used in place of tubulin.

PubMed Disclaimer

LinkOut - more resources