Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 Jul 5;22(14):3466-74.
doi: 10.1021/bi00283a025.

Structural studies on the membrane-bound immunoglobulin E-receptor complex. 1. Characterization of large plasma membrane vesicles from rat basophilic leukemia cells and insertion of amphipathic fluorescent probes

Structural studies on the membrane-bound immunoglobulin E-receptor complex. 1. Characterization of large plasma membrane vesicles from rat basophilic leukemia cells and insertion of amphipathic fluorescent probes

D Holowka et al. Biochemistry. .

Abstract

In order to investigate the properties of the membrane-bound IgE-receptor complex, a simple procedure has been adapted for preparing large plasma membrane vesicles from rat basophilic leukemia cells. These vesicles pinch off from the adherent cells after treatment with 2 mM N-ethylmaleimide or 50 mM formaldehyde and 1 mM dithiothreitol, and they are isolated from the supernatant after two centrifugation steps with yields of 20-25% of the initial cell-bound 125I-IgE. With phase and fluorescence microscopy, micron-size vesicles are seen which are unilamellar and spherically shaped and devoid of intracellular organelles. On dextran gradients at least 70% of the 125I-IgE is bound to membranes which band at low density, indicating large, intact vesicles that are impermeable to macromolecules. Between 60 and 75% of the bound 125I-IgE is accessible to the external medium, showing the vesicles to be predominantly right side out. This preparation was found to be suitable for resonance energy-transfer measurements. We have determined that amphipathic, fluorescent donor and acceptor probes partition into the vesicle bilayer in a randomly distributed, noninteracting manner. The densities of the probes can be ascertained directly from the amount of energy transfer that is observed as a function of acceptor concentration. This experimental system will allow energy-transfer measurements to determine distances between sites on receptor-bound IgE and the membrane surface.

PubMed Disclaimer

Publication types

LinkOut - more resources