Stimulation by thyroid hormone analogues of red blood cell Ca2+-ATPase activity in vitro. Correlations between hormone structure and biological activity in a human cell system
- PMID: 6226658
Stimulation by thyroid hormone analogues of red blood cell Ca2+-ATPase activity in vitro. Correlations between hormone structure and biological activity in a human cell system
Abstract
Human red blood cell membrane Ca2+-ATPase activity is stimulated in vitro by physiological concentrations (10(-10) M) of L-thyroxine (L-T4) and 3,5,3'-triiodo-L-thyronine (L-T3). This human cell system has been utilized to examine a series of iodothyronine and iodotyrosine analogues for structure-activity relationships. Analogue purity was verified by high pressure liquid chromatography. Analogues were studied at a concentration of 10(-10) M and the stimulatory effect of each analogue was compared with that of L-T4 in this system. Essential to Ca2+-ATPase stimulation were occupation of the 3 and 5 phenyl positions by iodide, bromide, or methyl groups, the L-configuration of the alanine side chain, side chain length equal to that of alanine, and a perpendicular (skewed) conformation of the two rings. The 4'-hydroxyl group is not essential to Ca2+-ATPase stimulation in this model system. T3 was 76% as active as T4 in stimulating Ca2+-ATPase activity. The stimulatory effect of 3,5-dimethyl-3'-isopropyl-L-thyronine and 3,5,3',5'-tetrabromo-L-thyronine approximated that of L-T4. Selected tyrosine analogues also stimulated the enzyme. The bioactivities of hormone analogues in this human model of extra-nuclear thyroid hormone action differ in several ways from results obtained previously in other animal model systems in vitro and in vivo.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous