Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Apr 25;259(8):4890-5.

Target size of calcium pump protein from skeletal muscle sarcoplasmic reticulum

  • PMID: 6232271
Free article

Target size of calcium pump protein from skeletal muscle sarcoplasmic reticulum

L Hymel et al. J Biol Chem. .
Free article

Abstract

The oligomeric size of calcium pump protein (CPP) in fast skeletal muscle sarcoplasmic reticulum membrane was determined using target theory analysis of radiation inactivation data. There was a parallel decrease of Ca2+-ATPase and calcium pumping activities with increasing radiation dose. The loss of staining intensity of the CPP band, observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, also correlated directly with the loss of activity. The target size molecular weight of the CPP in the normal sarcoplasmic reticulum membrane ranged between 210,000 and 250,000, which is consistent with a dimeric structure. Essentially the same size is obtained for the non-phosphorylated CPP or for the phosphoenzyme form generated from either ATP (E1 state) or inorganic phosphate (E2 state). Hence, the oligomeric state of the pump does not appear to change during the catalytic cycle. Similar results were obtained with reconstituted sarcoplasmic reticulum membrane vesicles with different lipid to protein ratios. We conclude that the CPP is a dimer in both native and reconstituted sarcoplasmic reticulum membranes. The target size of the calcium-binding protein (calsequestrin) was found to be 50,000 daltons, approximating a monomer.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources