Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1978 Jan;234(1):E79-83.
doi: 10.1152/ajpendo.1978.234.1.E79.

Salivary gland K+ transport: in vivo studies with K+-specific microelectrodes

Salivary gland K+ transport: in vivo studies with K+-specific microelectrodes

J H Poulsen et al. Am J Physiol. 1978 Jan.

Abstract

Stimulation-induced transport of K+ in the submandibular salivary gland of cats and dogs anesthetized with pentobarbital was studied with an extracellular K+-specific microelectrode. Electrical stimulation of the para-sympathetic chorda-lingual nerve caused a rapid transient increase in extracellular K+ concentration from 2.2 to 18.7 meq/liter in the cat and from 2.3 to 15.2 meq/liter in the dog. Eventually the K+ concentration fell below the prestimulatory level, indicating uptake of K+ by the gland cells. In case of prolonged stimulation (2-10 min), the uptake began during stimulation. However, a further reduction in extracellular K+ concentration occurred upon cessation of stimulation, a result that demonstrated that the cells did not fully recover their K+ ,content during stimulation. The latency of the release of K+, defined as the time from the beginning of stimulation to the point at which, the K+-specific microelectrode signal had increased by 2 mV, was 0.6 s in the cat and 0.8 s in the dog. Because these are overestimates of the "true" latencies, we conclude that the K+ release begins simultaneously with the hyperpolarization of the acinar cell membrane.

PubMed Disclaimer

Publication types

LinkOut - more resources