Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1984 Sep;65(3):323-31.
doi: 10.1016/0022-510x(84)90095-9.

Male and female differences in enzyme activities of energy metabolism in vastus lateralis muscle

Comparative Study

Male and female differences in enzyme activities of energy metabolism in vastus lateralis muscle

H J Green et al. J Neurol Sci. 1984 Sep.

Abstract

To investigate sex differences in the organization of enzyme activities of energy supplying metabolism in skeletal muscle, samples of the vastus lateralis were extracted from active but untrained males (n = 16) and females (n = 17), ranging in age from 18 to 22 years. Muscle tissue from 2 different biopsy samples from each subject were analyzed for enzymes representative of the citric acid cycle (succinic dehydrogenase, SDH), beta-oxidation of fatty acids (3-hydroxyacyl CoA dehydrogenase, HAD), glycogenolysis (phosphorylase, PHOSPH), glycolysis (pyruvate kinase, PK; phosphofructokinase, PFK and lactate dehydrogenase, LDH) and glucose phosphorylation (hexokinase, HK). The results indicated that the maximal activities of PFK, PK, LDH and PHOSPH, HK and SDH averaged between 15 and 32% higher in the males than in the females. No significant differences between the sexes were found for HAD. When enzyme activity ratios were calculated, sex differences were only evident for the HAD/SDH ratio (mean +/- SD; females = 0.56 +/- 0.20; males = 0.41 +/- 0.11 and for the PFK/HAD ratio (females = 7.40 +/- 1.6; males = 9.58 +/- 1.9). The findings suggest that (1) the females have a significantly lower overall capacity for aerobic oxidation and for anaerobic glycolysis than the males; (2) the females have a greater capacity for beta-oxidation relative to the capacity of the citric acid cycle; and (3) the glycolytic potential relative to the potential for beta-oxidation is lower in the females.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources