Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Dec 10;259(23):14448-57.

The temporal integration of the aldosterone secretory response to angiotensin occurs via two intracellular pathways

  • PMID: 6238962
Free article

The temporal integration of the aldosterone secretory response to angiotensin occurs via two intracellular pathways

I Kojima et al. J Biol Chem. .
Free article

Abstract

Angiotensin II (AII) regulates the secretion of aldosterone from adrenal glomerulosa cells by a calcium-dependent mechanism which involves both the uptake of calcium from the extracellular pool, and the release of calcium from a dantrolene-sensitive intracellular pool. In the present study, it was shown that AII induces the rapid (10 s) hydrolysis of phosphatidylinositol 4-phosphate and -4,5-bisphosphate, leading to the sustained production of inositol bis- and trisphosphate (Ins-P3), and diacylglycerol rich in arachidonic acid. Saponin-permeabilized glomerulosa cells accumulate calcium into a nonmitochondrial pool by an ATP-dependent manner. Ins-P3 (0.5-5 microM) induces a release of Ca2+ from this pool. This release was blocked by dantrolene (10 microM). Adrenal glomerulosa cells were shown to contain the calcium-activated, phospholipid-dependent protein kinase (C-kinase). Perfusion of glomerulosa cells with combined 12-O-tetradecanoyl phorbol 13-acetate and A23187 induced an immediately developing, sustained, maximal secretory response similar to that induced by AII. These data are interpreted in terms of a model in which, after AII addition, there is a flow of information through two separate branches of the calcium messenger system, each with its unique temporal role: a calmodulin branch activated by the transient rise in the [Ca2+] in the cell cytosol, which is largely responsible for the initial transient cellular response; and a C-kinase branch activated by the increase in both cytosolic [Ca2+] and the diacylglycerol content of the plasma membrane, which is largely responsible for the sustained phase of the cellular response. The temporal integration of these two phases underlies the observed pattern of cellular response.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources