Adaptation of skeletal muscles to training
- PMID: 6239669
Adaptation of skeletal muscles to training
Abstract
Based on the myosin ATPase reaction, human skeletal muscles are composed of two main fibre types, named slow (ST) and fast (FT) twitch fibres, respectively. With few exceptions, ST and FT fibres are evenly represented in the muscles, however with a large interindividual variation. Endurance athletes tend to have a predominance of ST fibres while sprinters have a predominance of FT fibres. The ST fibres are surrounded by 3-4 capillaries, and they have the largest potential for terminal oxidation and the smallest for glycolysis. Of the FT fibres, two subtypes may be distinguished (a and b), of which no FTb fibres are seen in the endurance trained muscles of athletes. Training also results in an increase in the number of capillaries for all fibre types. FTa fibres have a metabolic potential which is intermediate to that of the ST and FTb fibres. With endurance training, the potential for terminal oxidation increases, resulting in a larger ability to use fat as a fuel during submaximal exercise and in a reduced production of lactate. Thus, training has a glycogen sparing effect and endurance increases. Human intercostal muscles appear to have approximately 60% ST fibres. In the external intercostal muscles, the number of capillaries and the occurrence of FTb fibres is similar to the findings in untrained muscles. In contrast, the internal intercostal muscles placed in the mid-axillary line have no FTb fibres and relatively many capillaries. Thus, these (expiratory) muscles appear to be extensively used.
Similar articles
-
Acute and chronic responses of skeletal muscle to endurance and sprint exercise. A review.Sports Med. 1990 Dec;10(6):365-89. doi: 10.2165/00007256-199010060-00004. Sports Med. 1990. PMID: 2291032 Review.
-
Plasticity of human skeletal muscle with special reference to effects of physical training on enzyme levels of the NADH shuttles and phenotypic expression of slow and fast myofibrillar proteins.Acta Physiol Scand Suppl. 1986;558:1-62. Acta Physiol Scand Suppl. 1986. PMID: 2950727
-
Muscle metabolism during exercise.Arch Phys Med Rehabil. 1982 May;63(5):231-4. Arch Phys Med Rehabil. 1982. PMID: 7073462
-
Skeletal muscle fibre characteristics in young women.Acta Physiol Scand. 1981 Jul;112(3):299-304. doi: 10.1111/j.1748-1716.1981.tb06820.x. Acta Physiol Scand. 1981. PMID: 6457505
-
Muscle mechanics: adaptations with exercise-training.Exerc Sport Sci Rev. 1996;24:427-73. Exerc Sport Sci Rev. 1996. PMID: 8744258 Review.
Cited by
-
A high-resolution bovine mitochondrial co-expression network.Biol Open. 2025 Feb 15;14(2):BIO061630. doi: 10.1242/bio.061630. Epub 2025 Feb 3. Biol Open. 2025. PMID: 39898529 Free PMC article.