Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1980 May 8;285(5760):101-2.
doi: 10.1038/285101a0.

Evidence for fixed charge in the nexus

Evidence for fixed charge in the nexus

P R Brink et al. Nature. .

Abstract

The nexus or gap junction has been characterized as a low-resistance junction as well as a highly permeable junctional membrane to many molecules. The transfer of electrical current from one cell interior to another, the aqueous solubility of dyes used to trace cell to cell communication and the fact that these molecules move across the nexus more rapidly than the plasma membrane have led to the hypothesis of an aqueous channel in the junction. Both Ca2+ (ref.11) and H+ (ref. 12) are thought to alter nexal membrane conductance, and a voltage-sensitive gate has been demonstrated within the junction. Recently, Flagg-Newton et al. have concluded that mammalian junctions may contain fixed charge or be of smaller diameter than arthropod junctions. Here we have investigated these alternatives by examining the permeability of nexuses of septa of the median giant axon of Lumbricus terrestris with various derivatives of fluorescein. Both carboxyfluorescein and aminofluorescein were found to have depressed permeabilities relative to their predicted permeabilities based on molecular size and weight (MW). Flourescein diffusion was significantly suppressed in axons pre-injected with aminofluorescein but carboxyfluorescein had no such effect (Table 1). These data suggest the existence of fixed anionic charge within the nexal channel which may have affinity for amino groups.

PubMed Disclaimer

Publication types

LinkOut - more resources