Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1980 Oct 25;255(20):9659-65.

Oligothymidylate analogues having stereoregular, alternating methylphosphonate/phosphodiester backbones. Synthesis and physical studies

  • PMID: 6253451
Free article

Oligothymidylate analogues having stereoregular, alternating methylphosphonate/phosphodiester backbones. Synthesis and physical studies

P S Miller et al. J Biol Chem. .
Free article

Abstract

Two decathymidylate analogues, d-(TpTp)4TpT-isomer 1 and isomer 2, having stereoregular, alternating methylphosphonate/phosphodiester backbones were prepared. The phosphodiester linkages of d-(TpTp)4TpT are cleaved slowly by snake venom phosphodiesterase in a stepwise manner, while slow random cleavage occurs with micrococcal nuclease which hydrolyzes isomer 2 faster than isomer 1. The CD spectra of isomer 1 and d-(Tp)9T are identical suggesting they have similar conformations, while that of isomer 2 shows an overall reduction of [theta]. Isomer 1 forms a 1T . 1A complex with poly(dA) and both 1T . 1A and 2T . 1A complexes with poly(rA), while isomer 2 forms a 2T . 1A complex of low thermal stability with poly(dA) and no complex with poly(rA). The Tm values of the partially nonionic d-(TpTp)4TpT . polynucleotide complexes are less dependent on salt concentration than are those of d-(Tp)9T. The stoichiometry and CD spectra of the complexes suggest that poly(dA) . isomer 1 duplex assumes a B-type geometry while isomer 2 . poly(dA) . isomer 2 triplex and the isomer 1 . poly(rA) complexes have an A-type geometry. Although there are no apparent differences between steric restrictions to rotation about the backbones of either isomer 1 or 2, or steric restrictions to complex formation, the results suggest that the configuration of the methylphosphate linkage controls: 1) interaction with nucleases, 2) oligomer conformation, and 3) interaction with polynucleotides. The latter effects may result from differences in solvation of the two isomers.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources