Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1980 Sep 18;287(5779):237-9.
doi: 10.1038/287237a0.

Active sodium transport by turtle colon via an electrogenic Na-K exchange pump

Active sodium transport by turtle colon via an electrogenic Na-K exchange pump

K L Kirk et al. Nature. .

Abstract

Active sodium absorption by a variety of epithelia is abolished by ouabain, but the obligatory coupling between the movement of sodium and potassium expected from a basolateral (Na+ + K+) ATPase has not been convincingly demonstrated. According to the model of Koefoed-Johnsen and Ussing, the asymmetric cation selectivities of the apical and basolateral membranes prevent basolateral Na-K exchange from being expressed as opposing transmural ion flows. An additional consequence of this asymmetry is that the short-circuit current (Isc) cannot be identified with the current through the sodium-potassium pump. We used the polyene antibiotic, amphotericin-B, to reduce the resistance and the cation selectivity of the apical membrane of isolated turtle colon so that the basolateral membrane current could be dissected into two components: one through a barium-sensitive potassium channel and another which represents the current associated with ouabain-sensitive, electrogenic, Na-K exchange. Comparison of cation fluxes and short circuit current indicates that in these conditions active sodium absorption is entirely attributable to an electrogenic Na-K pump with a stoichiometry of approximately 3Na:2K.

PubMed Disclaimer

Publication types

LinkOut - more resources