Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1980 Sep;239(3):H365-70.
doi: 10.1152/ajpheart.1980.239.3.H365.

Inhibition by adenosine of catecholamine-induced increase in rat atrial contractility

Inhibition by adenosine of catecholamine-induced increase in rat atrial contractility

J B Rockoff et al. Am J Physiol. 1980 Sep.

Abstract

Because adenosine has been shown to attenuate the catecholamine-induced increase in myocardial cAMP formation and glycogen phosphorylase activity (Circ. Res. 43: 785-792, 1978), the present study was undertaken to determine whether the nucleoside inhibits the catecholamine-elicited increase in cardiac contractile state. Isolated rat atria were bathed in oxygenated physiologic saline and stimulated to contract isometrically at 2/s. Isoproterenol (0.1 microM) increased peak contractile force (PCF) by 96% and the rate of force development (+dF/dt) by 107%. Adenosine (10 microM) alone had no effect on these contractile parameters. Isoproterenol in the presence of adenosine increased PCF and +dF/dt only 15 and 14%, respectively. Elevation of bathing medium Ca2+ or administration of dibutyryl cAMP (DBcAMP) increased PCF and +dF/dt, but these responses were not decreased by adenosine. Inosine, adenine, adenosine 5'-monophosphate, and guanosine inhibited the isoproterenol-induced responses 5-22%. The results indicate that adenosine markedly inhibits, whereas some related purines only mildly attenuate, the catecholamine-elicited, but not the Ca2+- or DBcAMP-elicited, increases in contractility. Thus, adenosine may antagonize catecholamine-elicited glycogenolysis and enhanced contractile state in the heart by exerting an effect at the level of, or proximal to, cAMP formation.

PubMed Disclaimer

Publication types

LinkOut - more resources