Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1981 Jul 24;660(1):142-7.
doi: 10.1016/0005-2744(81)90119-4.

Evidence for an essential arginine residue at the active site of Escherichia coli acetate kinase

Evidence for an essential arginine residue at the active site of Escherichia coli acetate kinase

S S Wong et al. Biochim Biophys Acta. .

Abstract

Escherichia coli acetate kinase (ATP: acetate phosphotransferase, EC 2.7.2.1.) was inactivated in the presence of either 2,3-butanedione in borate buffer or phenylglyoxal in triethanolamine buffer. When incubated with 9.4 mM phenylglyoxal or 5.1 mM butanedione, the enzyme lost its activity with an apparent rate constant of inactivation of 0.079 min-1, respectively. The loss of enzymatic activity was concomitant with the loss of an arginine residue per active site. Phosphorylated substrates of acetate kinase, ATP, ADP and acetylphosphate as well as AMP markedly decreased the rate of inactivation by both phenylglyoxal and butanedione. Acetate neither provided any protection nor affected the protection rendered by the adenine nucleotides. However, it interfered with the protection afforded by acetylphosphate. These data suggest that an arginine residue is located at the active site of acetate kinase and is essential for its catalytic activity, probably as a binding site for the negatively charged phosphate group of the substrates.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources