Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1981 Oct 25;256(20):10319-28.

Mitochondrial respiratory capacity and Na+- and K+-dependent adenosine triphosphatase-mediated ion transport in the intact renal cell

  • PMID: 6270107
Free article

Mitochondrial respiratory capacity and Na+- and K+-dependent adenosine triphosphatase-mediated ion transport in the intact renal cell

S I Harris et al. J Biol Chem. .
Free article

Abstract

Cellular oxygen consumption was monitored during stimulation and inhibition of the Na+- and K+-dependent adenosine triphosphatase in a suspension of intact tubules isolated from the rabbit renal cortex. Respiratory rates were compared to the ADP-stimulated respiratory rate (state 3 rate) obtained in mitochondria released directly from the renal tubules by digitonin shock. At 37 degrees C, in the presence of NADH-linked substrates and fats, isolated renal cells respire at 50 to 60% of the state 3 rate. Inhibition of the (Na+,K+)-ATPase with the cardiac glycoside, ouabain, results in a decline in respiration to 25 to 30% of the state 3 rate. Stimulation of the (Na+,K+)-ATPase produced as a result of nystatin-mediated dissipation of plasma membrane Na+ and K+ gradients results in increased respiration with an oxygen consumption rate characteristic of optimal ATP synthesis (state 3). The relationship between metabolic substrate regimen, mitochondrial respiratory capacity, and cellular energy demand is examined in the context of these findings.

PubMed Disclaimer

Publication types

LinkOut - more resources