Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1981 Aug;78(8):4818-22.
doi: 10.1073/pnas.78.8.4818.

Interconverting mu and delta forms of the opiate receptor in rat striatal patches

Interconverting mu and delta forms of the opiate receptor in rat striatal patches

W D Bowen et al. Proc Natl Acad Sci U S A. 1981 Aug.

Abstract

The binding of a radiolabeled "mu receptor" prototype opiate, dihydromorphine (H2morphine), and the binding of a "delta receptor" prototype, [D-Ala2,D-Leu5]enkephalin (D-Enk), to slide-mounted rat caudate slices were simultaneously compared quantitatively and visualized by autoradiography. Generally, D-Enk bound to opiate receptors distributed evenly throughout the entire striatum (type 2 pattern), whereas H2morphine labeled discrete islands or patches of receptors (type 1 pattern). In the presence of Mn2+ (3 mM) or other divalent cations, however, Na+ and GTP at 25 degrees C caused an increase in D-Enk binding at the expense of H2morphine binding at striatal opiate receptor patches. Thus, these conditions shifted D-Enk binding from an even pattern to one that included both an even and patchy distribution. These incubation conditions not only promoted D-Enk binding to striatal patches but also enabled the opiate receptor to regulate adenylate cyclase with the same (P less than 0.01) ligand selectivity pattern as that obtained by the displacement of D-Enk binding. The relative affinity of opiate receptors in striatal patches for opiate peptides, naloxone, and morphine appears to be a function of incubation conditions and coupling to adenylate cyclase and is not indicative of distinctly different opiate receptors. We postulate a three-state allosteric model consisting of mu agonist-, mu antagonists-, and adenylate cyclase-coupled delta-agonist-preferring states, whose equilibrium may be regulated by a sulfhydryl group mechanism.

PubMed Disclaimer

References

    1. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2404-7 - PubMed
    1. J Med Chem. 1975 Mar;18(3):240-2 - PubMed
    1. Life Sci. 1975 Jun 15;16(12):1837-42 - PubMed
    1. Biochim Biophys Acta. 1976 May 21;433(3):482-95 - PubMed
    1. Brain Res. 1976 Oct 8;115(1):1-21 - PubMed