Photosensitive phosphoproteins in Halobacteria: regulatory coupling of transmembrane proton flux and protein dephosphorylation
- PMID: 6276413
- PMCID: PMC2112812
- DOI: 10.1083/jcb.91.3.895
Photosensitive phosphoproteins in Halobacteria: regulatory coupling of transmembrane proton flux and protein dephosphorylation
Abstract
A photoregulated reversible protein phosphorylation system controlled by the halobacterial rhodopsins was recently reported. The results presented in this paper identify the initial steps in the pathway from the absorption of light to the photoregulated protein phosphorylation and dephosphorylation reactions. Action spectrum, biochemical, and genetic analyses show that the proton pump bacteriorhodopsin mediates light-induced dephosphorylation of three photoregulated phosphoproteins. Light absorbed by bacteriorhodopsin is used to establish a proton efflux from the cells. The increase in the inwardly directed protonmotive force (pmf) from this efflux induces dephosphorylation of the three phosphoproteins, as demonstrated by the effects of the protonophore CCCP and of artificially imposed transmembrane pH gradients. Upon darkening the cells, cessation of the proton efflux through bacteriorhodopsin causes a decrease in pmf, which induces rephosphorylation of the proteins. Pmf appears to function as a regulator rather than a driving force in this system. Measurements of pmf-driven ATP synthesis in our conditions indicate the regulation of protein phosphorylation by pmf is probably not a consequence of proton flux through the H+ ATPase, a known energy coupling structure in these cells. The properties of this system may indicate the existence of a pmf detector which regulates kinase or phosphatase activity; i.e., a regulatory coupling device.
Similar articles
-
Transient proton inflows during illumination of anaerobic Halobacterium halobium cells.Arch Biochem Biophys. 1985 Sep;241(2):616-27. doi: 10.1016/0003-9861(85)90588-0. Arch Biochem Biophys. 1985. PMID: 2994571
-
Removal of transducer HtrI allows electrogenic proton translocation by sensory rhodopsin I.Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):10188-92. doi: 10.1073/pnas.91.21.10188. Proc Natl Acad Sci U S A. 1994. PMID: 7937859 Free PMC article.
-
Light-regulated retinal-dependent reversible phosphorylation of Halobacterium proteins.J Biol Chem. 1980 Jun 25;255(12):5501-3. J Biol Chem. 1980. PMID: 7380823
-
Photophosphorylation elements in halobacteria: an A-type ATP synthase and bacterial rhodopsins.J Bioenerg Biomembr. 1992 Dec;24(6):547-53. doi: 10.1007/BF00762347. J Bioenerg Biomembr. 1992. PMID: 1459986 Review.
-
Bacteriorhodopsin and the purple membrane of halobacteria.Biochim Biophys Acta. 1979 Mar 14;505(3-4):215-78. doi: 10.1016/0304-4173(79)90006-5. Biochim Biophys Acta. 1979. PMID: 35226 Review. No abstract available.
Cited by
-
Posttranslational protein modification in Archaea.Microbiol Mol Biol Rev. 2005 Sep;69(3):393-425. doi: 10.1128/MMBR.69.3.393-425.2005. Microbiol Mol Biol Rev. 2005. PMID: 16148304 Free PMC article. Review.
-
Archaeal protein kinases and protein phosphatases: insights from genomics and biochemistry.Biochem J. 2003 Mar 1;370(Pt 2):373-89. doi: 10.1042/BJ20021547. Biochem J. 2003. PMID: 12444920 Free PMC article. Review.
-
A phosphoprotein from the archaeon Sulfolobus solfataricus with protein-serine/threonine kinase activity.J Bacteriol. 2004 Jan;186(2):463-72. doi: 10.1128/JB.186.2.463-472.2004. J Bacteriol. 2004. PMID: 14702316 Free PMC article.
-
The membrane-associated protein-serine/threonine kinase from Sulfolobus solfataricus is a glycoprotein.J Bacteriol. 2002 May;184(10):2614-9. doi: 10.1128/JB.184.10.2614-2619.2002. J Bacteriol. 2002. PMID: 11976289 Free PMC article.
-
The archaeon Sulfolobus solfataricus contains a membrane-associated protein kinase activity that preferentially phosphorylates threonine residues in vitro.J Bacteriol. 2000 Jun;182(12):3452-9. doi: 10.1128/JB.182.12.3452-3459.2000. J Bacteriol. 2000. PMID: 10852877 Free PMC article.