Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1982 May;36(2):567-75.
doi: 10.1128/iai.36.2.567-575.1982.

Evidence for the involvement of proton motive force in the transport of glucose by a mutant of Streptococcus mutans strain DR0001 defective in glucose-phosphoenolpyruvate phosphotransferase activity

Free PMC article

Evidence for the involvement of proton motive force in the transport of glucose by a mutant of Streptococcus mutans strain DR0001 defective in glucose-phosphoenolpyruvate phosphotransferase activity

I R Hamilton et al. Infect Immun. 1982 May.
Free PMC article

Abstract

Streptococcus mutans DR0001 and a glucose-phosphotransferase (PTS)-defective mutant, DR0001/6, were grown anaerobically in a chemostat with a glucose limitation at dilution rates (D) of 0.04 to 0.6 h(-1) (mean generation time, 17 to 1.2 h). The mutant possessed only 15% of glucose-PTS activity of the wild type and gave cell yields (19%) less than those of the wild type. Glucose-PTS activity in strains DR0001 was maximum at D = 0.1 h(-1) and was adequate to account for transport in the chemostat at all dilution rates except D = 0.6 h(-1), at which it was 80% of the actual glucose uptake activity. The mutant DR0001/6, on the other hand, possessed only sufficient glucose-PTS activity to sustain growth at below D = 0.1 h(-1), indicating the presence of an alternate transport activity. This was confirmed in glycolytic rate experiments with washed cells, which demonstrated that the mutant showed rates 11- to 27-fold higher than that accountable via glucose-PTS activity alone. The wild-type organism contained both a high (K(s), 6.7 to 8.0 muM)- and a low (K(s), 57 to 125 muM)-affinity transport system, whereas the glucose-PTS-defective mutant contained only the low-affinity system (K(s), 62 to 133 muM). The glucose-PTS was shown to be the high-affinity system. Glucose uptake by the mutant was unaffected by 8 mM sodium arsenate, 10 mM azide, and 10 mM dinitrophenol but was completely inhibited by 0.05 mM sodium iodoacetate. Glycolysis in the organism was almost completely inhibited by 0.25 mM N',N' -dicyclohexylcarbodiimide (DCCD), indicating the involvement of an ATPase in glucose uptake. The ionophores carbonylcyanide-m-chlorophenylhydrazone and tetrachlorosali-cylanilide were inhibitory at concentrations of 10 muM, suggesting that a proton gradient was important in the transport process. Higher levels of DCCD and the ionophores were required to inhibit the wild-type organism to the same degree. A mechanism is proposed for the alternative transport system whereby proton motive force is created by the extrusion of protons by the DCCD-sensitive ATPase and glucose is transported down a proton gradient in a symport with protons.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Lab Pract. 1965 Oct;14(10):1150-61 - PubMed
    1. Biochem J. 1972 Aug;128(5):1339-44 - PubMed
    1. J Dent Res. 1973 Nov-Dec;52(6):1209-15 - PubMed
    1. J Dent Res. 1975 Mar-Apr;54(2):330-8 - PubMed
    1. Fed Proc. 1976 Aug;35(10):2185-9 - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources