Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1982 Jun 25;257(12):6669-76.

The acid phosphatase with optimum pH of 2.5 of Escherichia coli. Physiological and Biochemical study

  • PMID: 6282821
Free article

The acid phosphatase with optimum pH of 2.5 of Escherichia coli. Physiological and Biochemical study

E Dassa et al. J Biol Chem. .
Free article

Abstract

In Escherichia coli, the physiological conditions governing the expression of an acid phosphatase with an optimum pH of 2.5 were determined. By contrast with most enzymes, the synthesis of this phosphatase was turned off in exponentially growing bacteria and started as soon as cultures entered the stationary phase. A starvation for inorganic phosphate resulted in a premature full induction, while carbon, nitrogen, and sulfur limitations were inefficient. In the presence of nonlimiting amounts of inorganic phosphate, however, the transfer of the culture to anaerobic conditions led to an immediate accumulation of the acid phosphatase. Cyclic AMP exerted a strong negative control on the biosynthesis and of this enzyme for which the integrity of both the cya and the crp gene functions was necessary. The acid phosphatase was purified to apparent homogeneity and behaved as a monomeric protein with a molecular weight of about 45,000. It had predominantly a phosphoanhydride phosphatase activity and preferentially hydrolyzed the gamma-phosphoryl residue of GTP (Km = 0.35 mM) and the 5'-beta-phosphoryl residue of ppGpp (Km = 1.8 mM). The corresponding beta-phosphoryl residue of GDP was little hydrolyzed, while CTP, ATP, and UTP were not. The enzyme did not split most phosphomonoesters with the exception of the synthetic substrate p-nitrophenyl phosphate (Km = 2.7 mM), 2,3-bisphosphoglycerate (Km = 5 mM), and fructose 1,6-bisphosphate (Km = 5 mM). It was competitively inhibited by tartaric acid and by sodium fluoride (Ki = 60 microM). In addition, it was sensitive to the inhibitor of the translation elongation factor EF-G fusidic acid, and was also strongly inhibited by the triazine dye Cibacron Blue F3GA (Ki = 0.3 microM), suggesting the existence of a site able to recognize nucleotides.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources