Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1982 May 21;688(1):101-6.
doi: 10.1016/0005-2736(82)90583-1.

Inhibition of rat brain microsomal (Na+ + K+)-ATPase and K+-p-nitrophenylphosphatase by periodic acid

Inhibition of rat brain microsomal (Na+ + K+)-ATPase and K+-p-nitrophenylphosphatase by periodic acid

J M Bertoni. Biochim Biophys Acta. .

Abstract

The effects of mild periodate exposure on the kinetics of (Na+ + K+)-ATPase and K+-p-nitrophenylphosphatase were studied using rat cerebral microsome preparations. Fifty percent inhibition of both enzyme activities was attained near 3 microM periodate concentrations. This inhibition was biphasic with time. Mg2+-ATPase and Mg2+-p-nitrophenylphosphatase activities were much less inhibited by periodate. Periodate inhibition was partially reversed by dimercaprol and dithiothreitol but not by diffusion. The possible reaction products formic acid, formaldehyde, glyceraldehyde, and acetaldehyde had no inhibitory effects in similar concentrations. Periodate exposure produced no detectable changes in the activation of (Na+ + K+)-ATPase by Na+, K+, Mg2+, or ATP. Residues shared by both (Na+ + K+)-ATPase and K+-p-nitrophenylphosphatase are both critical to hydrolytic function and sensitive to mild oxidation by periodate.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources