Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1982 May 21;688(1):201-10.
doi: 10.1016/0005-2736(82)90595-8.

Na+ channels and amiloride-induced noise in the mammalian colon epithelium

Na+ channels and amiloride-induced noise in the mammalian colon epithelium

W Zeiske et al. Biochim Biophys Acta. .

Abstract

(1) The effects of the Na+-channel blocker, amiloride, on the short-circuit current carried by Na+ was studied with fluctuation analysis, in rabbit descending colon epithelium. (2) In the presence of mucosal amiloride, the power spectrum of the Na+-current noise showed a Lorentzian component. When the Na+ current was reduced by increasing the blocker concentrations, the Lorentzian plateau decreased and corner frequency increased. Macroscopic short-circuit current and current-noise data are evidence for a two-state mechanism of the blocker interaction with the Na+ channel. (3) On- and off-rate constants for the blocker-receptor reaction, single-channel currents and Na+-channel density were calculated at room temperature and at 37 degrees C. Also, the activation energy for the amiloride-receptor reaction was estimated. The microscopic parameters obtained for the Na+ channel in the colon were similar to those found for Na+ channels in other tight epithelia.

PubMed Disclaimer

Publication types

LinkOut - more resources