Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1982 Sep 25;257(18):10747-50.

Kinetics and mechanism of the reduction of ferricytochrome c by the superoxide anion

  • PMID: 6286671
Free article

Kinetics and mechanism of the reduction of ferricytochrome c by the superoxide anion

J Butler et al. J Biol Chem. .
Free article

Abstract

The temperature and pH dependence of the reaction of the superoxide radical anion with ferricytochrome c have been measured using the pulse-radiolysis technique. The temperature dependence of the reaction at low ionic strength yields an activation energy of 31 +/- 5 kJ/mol as compared to 14 +/- 3 kJ/mol for the reaction of CO2.(-) under the same conditions. The pH dependence fits the single pK'a of ferricytochrome c of 9.1. The bimolecular rate constant for the reaction of the superoxide anion with ferricytochrome c at pH 7.8, 21 +/- 2 degrees C, in the presence of 50 mM phosphate and 0.1 mM EDTA is (2.6 +/- 0.1) X 10(5) M-1 s-1. Using this value, 1 unit of superoxide dismutase activity (McCord, J. M., and Fridovich, I. (1969) J. Biol. Chem. 244, 6049-6055) is calculated to be 3.6 +/- 0.3 pmol of enzyme if the assay is performed in a total volume of 3.0 ml. Copper ions reduce the yield of the reaction of ferricytochrome c with CO2.(-). The reactivities of native and singly modified 4-carboxy-2,4-dinitrophenyllysine cytochromes c towards the superoxide anion radical are in the order native greater than 4-carboxy-2,4-dinitrophenyllysine 60 greater than lysine 13 greater than lysine 87 greater than lysine 27 greater than lysine 86 greater than lysine 72, indicating that electron transfer takes place at or close to the solvent accessible heme edge. The mechanism of the reaction is discussed in terms of the approach of superoxide anion radicals to the heme edge and the available molecular orbitals of both heme and free radicals.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources