Cellular Moloney murine sarcoma (c-mos) sequences are hypermethylated and transcriptionally silent in normal and transformed rodent cells
- PMID: 6287220
- PMCID: PMC369751
- DOI: 10.1128/mcb.2.1.42-51.1982
Cellular Moloney murine sarcoma (c-mos) sequences are hypermethylated and transcriptionally silent in normal and transformed rodent cells
Abstract
Moloney murine sarcoma virus carries an oncogenic sequence (v-mos) which is homologous to a single copy gene (c-mos) present in the normal cells of several vertebrate species. Because of the possible significance of c-mos sequences in normal development and malignant transformation induced by physical or chemical agents, we have examined the state of integration, methylation, and transcriptional activity of c-mos sequences in a variety of normal rodent tissues, normal cell lines, or cell lines transformed by radiation or chemical carcinogens. DNA-DNA hybridization, utilizing the Southern blotting technique and a plasmid-derived DNA probe representing the v-mos sequence, gave no evidence for rearrangements of the c-mos sequence in the DNAs obtained from these diverse cell types. Parallel studies employing the restriction enzyme isoschizomers HpaII and MspI indicated that in all of these cell types the c-mos sequences were heavily methylated. In addition, analysis of cellular RNAs by blot hybridization with the v-mos probe failed to detect evidence of transcription of the c-mos sequences in any of these cell types. This was in contrast to a Moloney sarcoma virus-transformed cell line in which we found that the integrated v-mos sequence was both undermethylated and extensively transcribed. Thus, it would appear that c-mos sequences do not play a role in the transformation of rodent cells by chemical or physical agents, although the possible role of other endogenous onc sequences remains to be determined.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources