Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1978 Jan;4(1):111-24.
doi: 10.1007/BF01546496.

Control of argininosuccinate synthetase by arginine in human lymphoblasts

Control of argininosuccinate synthetase by arginine in human lymphoblasts

J D Irr et al. Somatic Cell Genet. 1978 Jan.

Abstract

Human lymphoblasts in long-term culture have the enzyme activities necessary to convert citrulline to arginine: argininosuccinate synthetase and argininosuccinate lyase. Upon transfer from arginine-supplemented to citrulline-supplemented medium, lymphoblasts exhibit a lag period before resuming exponential growth. During this lag the specific activity of argininosuccinate synthetase increases an average of 60-fold. Argininosuccinate lyase activity remains unchanged. If normal lymphoblasts are starved in arginine-deficient medium without citrulline or if argininosuccinate lyase--deficient lymphoblasts are transferred to citrulline-containing medium, argininosuccinate synthetase activity increases linearly for several days and reaches even higher levels. Cycloheximide blocks the increase in enzyme activity. Cells grown in citrulline medium and pulse labeled with 35S-methionine incorporate more 35S-methionine into argininosuccinate synthetase protein than cells grown in arginine; the rate of disappearance of radioactively labeled enzyme is the same in citrulline- and arginine-grown cells. Arginine or a closely related metabolite thus appears to repress the synthesis of argininosuccinate synthetase of human lymphoblasts in culture.

PubMed Disclaimer

Publication types