Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1982 Jun 15;204(3):689-96.
doi: 10.1042/bj2040689.

Effects of adenosine, 2-deoxyadenosine and N6-phenylisopropyladenosine on rat islet function and metabolism

Effects of adenosine, 2-deoxyadenosine and N6-phenylisopropyladenosine on rat islet function and metabolism

I L Campbell et al. Biochem J. .

Abstract

Adenosine (1.0-100 mum). N(6)-phenylisopropyladenosine (0.1-10 mum) and 2-deoxyadenosine (10 mm) all produced a dose-dependent inhibition of glucose-stimulated insulin release. The inhibition of glucose-stimulated insulin release by adenosine and N(6)-phenylisopropyladenosine was abolished by 3-isobutyl-1-methylxanthine (0.1 mm), whereas 2-deoxyadenosine inhibited insulin release even in the presence of 3-isobutyl-1-methylxanthine. These adenosine nucleosides also inhibited the release of insulin induced by 4-methyl-2-oxopentanoate (20 mm), dl-glyceraldehyde (30 mm) and l-leucine (20 mm). Adenosine (10 mum). N(6)-phenylisopropyladenosine (10 mum) and 2-deoxyadenosine (10 mm) did not inhibit insulin biosynthesis or [U-(14)C]glucose oxidation at concentrations of the nucleosides that gave maximal inhibition of insulin release. However, adenosine, 2-deoxyadenosine and N(6)-phenylisopropyladenosine produced marked inhibition of the glucose-stimulated increases seen in islet cyclic AMP accumulation. Similar to its effects on insulin release, 3-isobutyl-1-methylxanthine (0.1 mm) antagonized the inhibitory effects of cyclic AMP accumulation produced by adenosine and N(6)-phenylisopropyladenosine, but had no effect on the inhibition of cyclic AMP accumulation seen with 2-deoxyadenosine. These results show that adenosine and its specifically modified analogues, 2-deoxyadenosine and N(6)-phenylisopropyladenosine, are strong inhibitors of insulin release from rat islets, a function that appears to be the consequence of their ability to inhibit the accumulation of cyclic AMP. It is proposed that the B cells, in common with many other tissues, may possess two different sites at which adenosine nucleosides interact to produce their biological effects; these are the so-called ;P' and ;R' sites first described by Londos & Wolff [(1977) Proc. Natl. Acad. Sci. U.S.A.74, 5482-5486].

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Biol Chem. 1951 Nov;193(1):265-75 - PubMed
    1. J Physiol. 1961 Feb;155:302-10 - PubMed
    1. Biochem J. 1963 Jul;88:137-46 - PubMed
    1. Am J Physiol. 1963 Feb;204:317-22 - PubMed
    1. Biochem J. 1968 Jun;108(1):17-24 - PubMed

Publication types