Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1982 Aug 17;21(17):4159-64.
doi: 10.1021/bi00260a037.

Two pH optima of adenosine 5'-triphosphate dependent deoxyribonuclease from Bacillus laterosporus

Two pH optima of adenosine 5'-triphosphate dependent deoxyribonuclease from Bacillus laterosporus

T Fujiyoshi et al. Biochemistry. .

Abstract

The various catalytic activities of the ATP-dependent deoxyribonuclease (DNase) of Bacillus laterosporus have pH optima at 6.3 and 8.3. Although the pH profile of ATP-dependent DNase activity on duplex DNA is bell shaped with a maximum at about pH 8.3, ATP-dependent DNAse activity on single-stranded DNA has optima at pH 6.3 and 8.3. ATPase activities dependent on double-stranded and single-stranded DNA have a high bell-shaped peak with a maximum at pH 6.3 with a low and broad shoulder at about pH 8.3. ATP-independent DNase activity also has optima at pH 6.3 and 8.3. The ratio of the amount of ATP hydrolyzed per number of cleaved phosphodiester bonds in DNA increases with decrease in the pH value of the reaction. The ratios obtained at pH 8.3 and 6.3 were respectively about 3 and 22 with duplex DNA as substrate and 5 and 17 with single-stranded DNA as substrate. Formation of a single-stranded region of 15000-20000 nucleotides, which is linked to duplex DNA and about half of which has 3'-hydroxyl termini, was observed at about pH 6.3, but not at above pH 7.5. Furthermore, the optimum concentrations of divalent cations for the activity producing the single-stranded region and the activity hydrolyzing ATP were identical (3 mM Mn2+ or 5 mM Mg2+). Thus the two activities are closely related. These results indicate that the enzyme has two different modes of action on duplex DNA which are modulated by the pH.

PubMed Disclaimer