Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1978 Mar 21;17(6):1010-4.
doi: 10.1021/bi00599a011.

Mechanism of inactivation of ornithine decarboxylase by alpha-methylornithine

Mechanism of inactivation of ornithine decarboxylase by alpha-methylornithine

M H O'Leary et al. Biochemistry. .

Abstract

Ornithine decarboxylase from Lactobacillus 30a is gradually inactivated by treatment with alpha-methylornithine, but activity is restored by treatment of the inactivated enzyme with pyridoxal phosphate. Inactivation of the enzyme is associated with formation of pyridoxamine phosphate and 5-amino-2-pentanone, alpha-Methylornithine is decarboxylated by the enzyme about 6000 times more slowly than is ornithine under the same conditions. These observations provide an explanation for the previously observed inhibition of ornithine decarboxylase by alpha-methylornithine [M. M. Adbel-Monem, N. E. Newton, and C. E. Weeks (1974), J. Med. Chem. 17, 4447]: alpha-Methylornithine undergoes a decarboxylation-dependent transamination as a result of incorrect protonation of the quinoid intermediate which is formed by decarboxylation of the enzyme-bound pyridoxal phosphate-substrate Schiff base. This protonation produces inactive enzyme. Decarboxylation of ornithine by this enzyme produces a small amount of 4-aminobutanal, presumably also by decarboxylation-dependent transamination.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms