Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 Mar 15;22(6):1317-22.
doi: 10.1021/bi00275a001.

Electron transfer in monomeric forms of beef and shark heart cytochrome c oxidase

Electron transfer in monomeric forms of beef and shark heart cytochrome c oxidase

G Georgevich et al. Biochemistry. .

Abstract

Beef heart cytochrome c oxidase is dimeric in reconstituted membranes and in nonionic detergents at physiological pH [Henderson, R., Capaldi, R. A., & Leigh, J. (1977) J. Mol. Biol. 112, 631; Robinson, N.C., & Capaldi, R. A. (1977) Biochemistry 16, 375], raising the possibility that this aggregation state is a prerequisite for enzymatic activity. A procedure for dissociating the enzyme into monomers is presented. This involves treating the protein with high concentrations of Triton X-100 at pH 8.5. The electron transfer activity of the monomer is comparable to that of the dimer under identical assay conditions. The beef heart cytochrome c oxidase monomer was found to be heterogeneous in hydrodynamic studies, probably due to dissociation of associated polypeptides, including subunit III. Monomer molecular weights in the range 129 000-160 000 were obtained. Previous studies have indicated that shark heart cytochrome c oxidase is monomeric under physiological conditions. Sedimentation equilibrium studies reported here confirm this. The elasmobranch enzyme, with a similar polypeptide composition to that of beef enzyme, was determined to have a molecular weight of 158 000.

PubMed Disclaimer

Publication types