Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 May;303(5913):172-5.
doi: 10.1038/303172a0.

Single sodium channels from rat brain incorporated into planar lipid bilayer membranes

Single sodium channels from rat brain incorporated into planar lipid bilayer membranes

B K Krueger et al. Nature. 1983 May.

Abstract

A voltage- and time-dependent conductance for sodium ions is responsible for the generation of impulses in most nerve and muscle cells. Changes in the sodium conductance are produced by the opening and closing of many discrete transmembrane channels. We present here the first report of electrical recordings from voltage-dependent sodium channels incorporated into planar lipid bilayers. In bilayers with many channels, batrachotoxin (BTX) induced a steady-state sodium current that was blocked by saxitoxin (STX) at nanomolar concentrations. All channels appeared in the bilayer with their STX blocking sites facing the side of vesicle addition, allowing us to define that as the extracellular side. Current fluctuations due to the opening and closing of single BTX-activated sodium channels were voltage-dependent (unit conductance, 30 pS in 0.5 M NaCl): the channels closed at large hyperpolarizing potentials. Slower fluctuations of the same amplitude, due to the blocking and unblocking of individual channels, were seen after addition of STX. Block of the sodium channels by STX was voltage-dependent, with hyperpolarizing potentials favouring block. The voltage-dependent gating, ionic selectivity and neurotoxin sensitivity suggest that these are the channels that normally underlie the sodium conductance change during the nerve impulse.

PubMed Disclaimer

Publication types

LinkOut - more resources