Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1983 Jan;128(1):138-51.
doi: 10.1016/0003-2697(83)90354-8.

The influence of agarose--DNA affinity on the electrophoretic separation of DNA fragments in agarose gels

Comparative Study

The influence of agarose--DNA affinity on the electrophoretic separation of DNA fragments in agarose gels

S S Smith et al. Anal Biochem. 1983 Jan.

Abstract

The effects of DNA concentration, buffer composition, added "carrier" DNA, and chemical modification of agarose on the electrophoretic separation of DNA restriction fragments in agarose gels were tested. Electrophoretic zones of migrating DNA were found to broaden by trailing as sample load was decreased, and this effect was found to be more pronounced for species of higher molecular weight. As DNA sample load was increased, DNA fragments were found to move faster in the direction of electrophoresis (front forward). Sharp, well-resolved electrophoretic zones were obtained at very low DNA loads only when a high-salt, high-pH, high-EDTA buffer was employed or when "carrier DNA" having a broad and uniform molecular weight distribution was included in the sample. Moreover, DNA in high concentration was found to displace DNA in low concentration from a given gel region. Unmodified agaroses were found to differ only slightly in their effectiveness in retarding DNA fragments at a given agarose concentration. However, hydroxyethylated agarose was much more effective in retarding DNA, at a given gel concentration, than the unmodified agaroses tested. These results show that it is useful to consider the agarose gel matrix as possessing the properties of both a molecular sieve and a chromatographic adsorbent when designing electrophoretic separation techniques for DNA. A model for these separations which includes the effects of DNA-agarose interaction and molecular sieving is discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources